If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2c^2-144=0
a = 2; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·2·(-144)
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{2}}{2*2}=\frac{0-24\sqrt{2}}{4} =-\frac{24\sqrt{2}}{4} =-6\sqrt{2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{2}}{2*2}=\frac{0+24\sqrt{2}}{4} =\frac{24\sqrt{2}}{4} =6\sqrt{2} $
| 17)+7x=-8(1-4x) | | 50*x=6.5 | | 14x-2=22 | | 3(1-9A)=22a=2(2a-9)-125 | | -10x-3=-3x-9 | | m/19=11 | | 4x^2-20x-36=0 | | -66.6(15x+3)=-3x-9 | | Y=8-b | | (4x+18)+(2x-6)=180 | | -3(8k)+5)=3(9-k) | | (8x+16)+(9x11)=180 | | -1+14x=110 | | -10x+17=-3 | | (2x+350)(2x+200)=74.464 | | 12=13n-4n+9 | | 2(5x-2)-2(3x+7)=2 | | 4x+5/3+2x=3/2 | | X-x/4=36 | | X-3/5=4x+12/5 | | 5y+9=7y+2 | | 5(x-3)=4x+12(5) | | (4x+20)+(3x+30)=180 | | 1/2z-4=6-13/2z | | 9y-1=9-y | | 9y+3y=12y | | f=(9/5(80)+32 | | 68+x=76 | | 17-b=25 | | 6(5)=3(x) | | 3v+14=6v+19 | | p-8=8p |